KINEMATIKA
Dalam fisika, kinematika adalah cabang dari mekanika yang membahas gerakan benda tanpa mempersoalkan gaya penyebab gerakan. Hal terakhir ini berbeda dari dinamika atau sering disebut dengan Kinetika, yang mempersoalkan gaya yang mempengaruhi gerakan.
KINEMATIKA GERAK LURUS : PERSAMAAN DUA DIMENSI
Persamaan gerak dalam dua dimensi digambarkan menggunakan fungsi dalam vektor, misalnya vektor posisi digambarkan sebagai bagian dari koordinat X dan Y menjadi :
Jika terdapat dua koordinat masing-masing dan
maka vektor perpindahannya adalah atau dapat pula dinyatakan sebagai
Perlu anda ingat bahwa perpindahan adalah perubahan posisi.
Vektor Kecepatan Rata-Rata
Kecepatan didefinisikan sebagai perubahan posisi setiap satuan waktu, sehingga secara vektor, fungsi kecepatan ini dituliskan sebagai
maka fungsi kecepatan dapat dituliskan sebagai
karena
Fungsi di atas hanya digunakan untuk menentukan vektor kecepatan rata-rata
Adapun Fungsi kecepatan sesaat dinyatakan menurut fungsi yang dapat pula dituliskan sebagai
atau
menyatakan komponen kecepatan pada sumbu X dan menyatakan komponen kecepatan pada sumbu Y.
fungsi menyatakan laju perubahan atau diferensial/ turunan
Gerak vertikal ke bawah
Gerak vertikal ke bawah sangat mirip dengan gerak jatuh bebas, cuma beda tipis… kalau pada gerak jatuh bebas, kecepatan awal benda, vo = 0, maka pada gerak vertikal ke bawah, kecepatan awal (vo) benda tidak sama dengan nol. Contohnya begini… kalau buah mangga dengan sendirinya terlepas dari tangkainya dan jatuh ke tanah, maka buah mangga tersebut melakukan Gerak Jatuh Bebas. Tapi kalau buah mangga anda petik lalu anda lemparkan ke bawah, maka buah mangga melakukan gerak Vertikal Ke bawah. Atau contoh lain… anggap saja anda sedang memegang batu… nah, kalau batu itu anda lepaskan, maka batu tersebut mengalami gerak Jatuh bebas.. tapi kalau batu anda lemparkan ke bawah, maka batu mengalami Gerak Vertikal Ke bawah. Pahami konsep ini baik-baik, karena jika tidak dirimu akan kebingungan dengan rumusnya……..
Karena gerak vertikal merupakan contoh GLBB, maka kita menggunakan rumus GLBB. Kita tulis dulu rumus GLBB ya, baru kita bahas satu per satu……
vt = vo + at
s = vo t + ½ at2
vt2 = vo2 + 2as
Kalau dirimu paham konsep Gerak Vertikal Ke bawah, maka persamaan ini dengan mudah diubah menjadi persamaan Gerak Vertikal Ke bawah.
Pertama, percepatan pada gerak vertikal = percepatan gravitasi ( a = g)
Kedua, ketiga melakukan gerak vertikal ke bawah, kecepatan awal benda bertambah secara konstan setiap saat (benda mengalami percepatan tetap). Karena benda mengalami percepatan tetap maka g bernilai positif.
Ketiga, kecepatan awal tetap disertakan karena pada Gerak Vertikal ke bawah benda mempunyai kecepatan awal.
Keempat, karena benda bergerak vertikal maka s bisa kita ganti dengan h atau y.
Dengan demikian, jika persamaan GLBB di atas diubah menjadi persamaan Gerak Vertikal ke bawah, maka akan kita peroleh persamaan Gerak Vertikal ke bawah sebagai berikut :
vt = vo + gt
h = vo t + ½ gt2
vt2 = vo2 + 2gh
Contoh soal 1 :
Misalnya anda memanjat pohon mangga untuk memetik buah mangga. Setelah dipetik, buah mangga anda lempar ke bawah dari ketinggian 10 meter, dengan kecepatan awal 5 m/s. Berapa kecepatan buah mangga ketika menyentuh tanah ? g = 10 m/s2
Panduan jawaban :
Karena diketahui h, vo dan g, maka kita menggunakan persamaan :
vt2 = vo2 + 2gh
vt2 = (5 m/s)2 + 2(10 m/s2) (10 m)
vt2 = 25 m2/s2 + 200 m2/s2
vt2 = 225 m2/s2
vt = 15 m/s
Gerak Vertikal Ke atas
Setelah pemanasan dengan soal gerak vertikal ke bawah yang gurumuda sajikan di atas, sekarang mari kita bergulat lagi dengan Gerak Vertikal ke Atas. Analisis Gerak Jatuh Bebas dan Gerak Vertikal ke bawah lebih mudah dibandingkan dengan Gerak Vertikal ke atas. Hala… gampang kok… santai saja. Oya, sebelumnya terlebih dahulu anda pahami konsep Gerak Vertikal ke atas yang akan dijelaskan berikut ini.
Gerak vertikal ke atas itu bagaimana ? apa bedanya gerak vertikal ke atas dengan gerak vertikal ke bawah ?
Ada bedanya….
Pada gerak vertikal ke bawah, benda hanya bergerak pada satu arah. Jadi setelah diberi kecepatan awal dari ketinggian tertentu, benda tersebut bergerak dengan arah ke bawah menuju permukaan bumi. Terus bagaimana dengan Gerak Vertikal ke atas ?
Pada gerak vertikal ke atas, setelah diberi kecepatan awal, benda bergerak ke atas sampai mencapai ketinggian maksimum. Setelah itu benda bergerak kembali ke permukaan bumi. Dinamakan Gerak Vertikal Ke atas karena benda bergerak dengan arah ke atas alias menjahui permukaan bumi. Persoalannya, benda tersebut tidak mungkin tetap berada di udara karena gravitasi bumi akan menariknya kembali. Dengan demikian, pada kasus gerak vertikal ke atas, kita tidak hanya menganalisis gerakan ke atas, tetapi juga ketika benda bergerak kembali ke permukaan bumi… ini yang membuat gerak vertikal ke atas sedikit berbeda…
Karena gerakan benda hanya dipengaruhi oleh percepatan gravitasi yang bernilai tetap, maka gerak vertikal ke atas termasuk gerak lurus berubah beraturan. Dengan demikian, untuk menurunkan persamaan Gerak Vertikal ke atas, kita tetap menggunakan persamaan GLBB.
Kita tulis kembali ketiga persamaan GLBB :
vt = vo + at
s = vo t + ½ at2
vt2 = vo2 + 2as
Ada beberapa hal yang perlu kita perhatikan dalam menganalisis Gerak Vertikal ke atas
Pertama, percepatan pada gerak vertikal = percepatan gravitasi ( a = g).
Kedua, ketika benda bergerak ke atas, kecepatan benda berkurang secara konstan setiap saat. Kecepatan benda berkurang secara konstan karena gravitasi bumi bekerja pada benda tersebut dengan arah ke bawah. Masa sich ? Kalau gravitasi bumi bekerja ke atas, maka benda akan terus bergerak ke atas alias tidak kembali ke permukaan bumi. Tapi kenyataannya tidak seperti itu… Karena kecepatan benda berkurang secara teratur maka kita bisa mengatakan bahwa benda yang melakukan gerak vertikal ke atas mengalami perlambatan tetap. Karena mengalami perlambatan maka percepatan gravitasi bernilai negatif.
Kedua, karena benda bergerak vertikal maka s bisa kita ganti dengan h atau y.
Ketiga, pada titik tertinggi, tepat sebelum berbalik arah, kecepatan benda = 0.
Jika persamaan GLBB di atas diubah menjadi persamaan Gerak Vertikal ke atas, maka akan diperoleh persamaan berikut ini :
vt = vo – gt
h = vo t – ½ gt2
vt2 = vo2 – 2gh
Contoh soal 1 :
Sebuah bola dilempar ke atas dan mencapai titik tertinggi 10 meter. Berapa kecepatan awalnya ? g = 10 m/s2
Panduan jawaban :
Ingat ya, pada titik tertinggi kecepatan bola = 0.
Soal ini gampang… karena diketahui kecepatan akhir (vt = 0) dan tinggi (h = 10 m), sedangkan yang ditanyakan adalah kecepatan awal (vo), maka kita menggunakan persamaan :
vt2 = vo2 – 2gh
0 = vo2 – 2(10 m/s2) (10 m)
vo2 = 200 m2/s2
vo = 14,14 m/s
Pada suatu lokasi tertentu di Bumi dan dengan tidak adanya hambatan udara, semua benda jatuh dengan percepatan konstan yang sama.
Kita menyebut percepatan ini sebagai percepatan yang disebabkan oleh gravitasi pada bumi dan memberinya simbol g. Besarnya kira-kira 9,8 m/s2. Dalam satuan Inggris alias British, besar g kira-kira 32 ft/s2. Percepatan yang disebabkan oleh gravitasi adalah percepatan sebuah vektor dan arahnya menuju pusat bumi.
Persamaan Gerak Jatuh Bebas
Selama membahas Gerak Jatuh Bebas, kita menggunakan rumus/persamaan GLBB, yang telah dijelaskan pada pokok bahasan GLBB (dibaca dahulu pembahasan GLBB biar nyambung). Kita pilih kerangka acuan yang diam terhadap bumi. Kita menggantikan x atau s (pada persamaan glbb) dengan y, karena benda bergerak vertikal. Kita juga bisa menggunakan h, menggantikan x atau s. Kedudukan awal benda kita tetapkan y0 = 0 untuk t = 0. Percepatan yang dialami benda ketika jatuh bebas adalah percepatan gravitasi, sehingga kita menggantikan a dengan g. Dengan demikian, persamaan Gerak Jatuh Bebas tampak seperti pada kolom kanan tabel.
Penggunaan y positif atau y negatif pada arah ke atas atau ke bawah tidak menjadi masalah asal kita harus konsisten selama menyelesaikan soal.
Pembuktian Matematis
Pada penjelasan panjang lebar di atas, anda telah saya gombali untuk membuktikan secara matematis konsep Gerak Jatuh Bangun, eh Gerak Jatuh Bebas bahwa massa benda tidak mempengaruhi laju jatuh benda. Di samping itu, setiap benda yang jatuh bebas mengalami percepatan tetap, semakin tinggi kedudukan benda dari permukaan tanah, semakin cepat gerak benda ketika hendak mencium tanah. Demikian pula, semakin lama waktu yang dibutuhkan benda untuk jatuh, semakin cepat gerak benda ketika hendak mencium batu dan debu. Masih ingat ga? Gawat kalo belajar sambil tiduran, tuh colokin tangan ke komputer biar pemanasan (piss…..)
Sekarang, rumus-rumus Gerak Jatuh Bebas yang telah diturunkan diatas, kita tulis kembali untuk pembuktian matematis.
vy = vyo + gt —— Persamaan 1
y = vyot + ½ gt2 —— Persamaan 2
vy2 = vyo2 + 2gh —— Persamaan 3
(sory, baru lupa… embel-embel y di belakang v hanya ingin menunjukan bahwa benda bergerak vertikal atau benda bergerak pada sumbu y, bila kita membayangkan terdapat sumbu kordinat sepanjang lintasan benda. Ingat lagi pembahasan mengenai titik acuan)
Amati rumus-rumus di atas sampai puas. Ini perintah Jenderal, ayo dilaksanakan. Kalo bisa sampai matanya bersinar….
Pembuktian Nol
Setelah mengamati rumus di atas, apakah dirimu melihat lambang massa alias m ? karena tidak ada, maka kita dapat menyimpulkan bahwa massa tidak ikut bertanggung jawab dalam Gerak Jatuh Bebas. Setuju ya ? jadi masa tidak berpengaruh dalam GJB.
Pembuktian Pertama
vy = vyo + gt —— Persamaan 1
Misalnya kita meninjau gerak buah mangga yang jatuh dari tangkai pohon mangga. Kecepatan awal Gerak Jatuh Bebas buah mangga (vy0) = 0 (mengapa bernilai 0 ? diselidiki sendiri ya….) Dengan demikian, persamaan 1 berubah menjadi :
vy = gt
Melalui persamaan ini, dapat diketahui bahwa kecepatan jatuh buah mangga sangat dipengaruhi oleh percepatan gravitasi (g) dan waktu (t). Karena g bernilai tetap (9,8 m/s2), maka pada persamaan di atas tampak bahwa nilai kecepatan jatuh benda ditentukan oleh waktu (t). semakin besar t atau semakin lamanya buah mangga berada di udara maka nilai vy juga semakin besar.
Nah, kecepatan buah mangga tersebut selalu berubah terhadap waktu atau dengan kata lain setiap satuan waktu kecepatan gerak buah mangga bertambah. Percepatan gravitasi yang bekerja pada buah mangga bernilai tetap (9,8 m/s2), tetapi setiap satuan waktu terjadi pertambahan kecepatan, di mana pertambahan kecepatan alias percepatan bernilai tetap. Alasan ini yang menyebabkan Gerak Jatuh Bangun termasuk GLBB.
Pembuktian Kedua
Sekarang kita tinjau hubungan antara jarak atau ketinggian dengan kecepatan jatuh benda
vy2 = vyo2 + 2gh —— Persamaan 3
Misalnya kita meninjau batu yang dijatuhkan dari ketinggian tertentu, di mana batu tersebut dilepaskan (bukan dilempar ke bawah). Jika dilepaskan maka kecepatan awal alias v0 = 0, seperti buah mangga yang jatuh dengan sendirinya tanpa diberi kecepatan awal. Jika batu tersebut dilempar, maka terdapat kecepatan awal. Paham ya perbedaannya….
Karena vy0 = 0, maka persamaan 3 berubah menjadi :
vy2 = 2gh
Dari persamaan ini tampak bahwa besar/nilai kecepatan dipengaruhi oleh jarak atau ketinggian (h) dan percepatan gravitasi (g). Sekali lagi, ingat bahwa percepatan gravitasi bernilai sama (9,8 m/s2). Karena gravitasi bernilai tetap, maka nilai kecepatan sangat ditentukan oleh ketinggian (h). semakin tinggi kedudukan benda ketika jatuh, semakin besar kecepatan benda ketika hendak menyentuh tanah. setiap satuan jarak/tinggi terjadi pertambahan kecepatan saat benda mendekati tanah, di mana nilai pertambahan kecepatan alias percepatannya tetap.
Contoh soal :
Sebuah batu bermassa 2 kg dilepaskan dari keadaan diam dan jatuh secara bebas. Tentukan posisi dan laju batu tersebut setelah bergerak 1 s, 5 s dan 10 s.
Panduan jawaban :
Anda harus mengidentifikasi atau mengecek masalah pada soal ini terlebih dahulu sebelum menyelesaikannya. perhatikan bahwa yang ditanyakan adalah kedudukan dan laju batu setelah dijatuhkan sekian detik. Setelah anda berhasil mengidentifikasi masalahnya, selanjutnya anda memutuskan untuk menggunakan solusi alias cara pemecahan yang seperti apa. Tersedia 3 rumus yang dapat anda gunakan. Pakai yang mana ?
vy = gt
y = ½ gt2
vy2 = 2gh
gerak melingkar
Setiap benda yang bergerak membentuk suatu lingkaran dikatakan melakukan gerakan melingkar. Sebelum membahas lebih jauh mengenai gerak melingkar, terlebih dahulu kita pelajari besaran-besaran fisis dalam gerak melingkar.
Besaran-Besaran Fisis dalam Gerak Melingkar
(Perpindahan Sudut, Kecepatan sudut dan Percepatan Sudut)
Dalam gerak lurus kita mengenal tiga besaran utama yaitu perpindahan (linear), kecepatan (linear) dan Percepatan (linear). Gerak melingkar juga memiliki tiga komponen tersebut, yaitu perpindahan sudut, kecepatan sudut dan percepatan sudut. Pada gerak lurus kita juga mengenal Gerak Lurus Beraturan dan Gerak Lurus Berubah Beraturan. Dalam gerak melingkar juga terdapat Gerak Melingkar Beraturan (GMB) dan Gerak Melingkar Berubah Beraturan (GMBB). Selengkapnya akan kita bahas satu persatu. Sekarang mari kita berkenalan (kaya manusia aja ya) dengan besaran-besaran dalam gerak melingkar dan melihat hubungannya dengan besaran fisis gerak lurus.
Perpindahan Sudut
Mari kita tinjau sebuah contoh gerak melingkar, misalnya gerak roda kendaraan yang berputar. Ketika roda berputar, tampak bahwa selain poros alias pusat roda, bagian lain roda lain selalu berpindah terhadap pusat roda sebagai kerangka acuan. Perpindahan pada gerak melingkar disebut perpindahan sudut. Bagaimana caranya kita mengukur perpindahan sudut ?
Ada tiga cara menghitung sudut. Cara pertama adalah menghitung sudut dalam derajat (o). Satu lingkaran penuh sama dengan 360o. Cara kedua adalah mengukur sudut dalam putaran. Satu lingkaran penuh sama dengan satu putaran. Dengan demikian, satu putaran = 360o. Cara ketiga adalah dengan radian. Radian adalah satuan Sistem Internasional (SI) untuk perpindahan sudut, sehingga satuan ini akan sering kita gunakan dalam perhitungan. Bagaimana mengukur sudut dengan radian ?
Mari kita amati gambar di bawah ini.
Nilai radian dalam sudut adalah perbandingan antara jarak linear x dengan jari-jari roda r. Jadi,
Perhatikan bahwa satu putaran sama dengan keliling lingkaran, sehingga dari persamaan di atas, diperoleh :
Derajat, putaran dan radian adalah besaran yang tidak memiliki dimensi. Jadi, jika ketiga satuan ini terlibat dalam suatu perhitungan, ketiganya tidak mengubah satuan yang lain.
Kecepatan Sudut
Dalam gerak lurus, kecepatan gerak benda umumnya dinyatakan dengan satuan km/jam atau m/s. Telah kita ketahui bahwa tiap bagian yang berbeda pada benda yang melakukan gerak lurus memiliki kecepatan yang sama, misalnya bagian depan mobil mempunyai kecepatan yang sama dengan bagian belakang mobil yang bergerak lurus.
Dalam gerak melingkar, bagian yang berbeda memiliki kecepatan yang berbeda. Misalnya gerak roda yang berputar. Bagian roda yang dekat dengan poros bergerak dengan kecepatan linear yang lebih kecil, sedangkan bagian yang jauh dari poros alias pusat roda bergerak dengan kecepatan linear yang lebih besar. Oleh karena itu, bila kita menyatakan roda bergerak melingkar dengan kelajuan 10 m/s maka hal tersebut tidak bermakna, tetapi kita bisa mengatakan tepi roda bergerak dengan kelajuan 10 m/s.
Pada gerak melingkar, kelajuan rotasi benda dinyatakan dengan putaran per menit (biasa disingkat rpm – revolution per minute). Kelajuan yang dinyatakan dengan satuan rpm adalah kelajuan sudut. Dalam gerak melingkar, kita juga dapat menyatakan arah putaran. misalnya kita menggunakan arah putaran jarum jam sebagai patokan. Oleh karena itu, kita dapat menyatakan kecepatan sudut, di mana selain menyatakan kelajuan sudut, juga menyatakan arahnya (ingat perbedaan kelajuan dan kecepatan, mengenai hal ini sudah Gurumuda terangkan pada Pokok bahasan Kinematika). Jika kecepatan pada gerak lurus disebut kecepatan linear (benda bergerak pada lintasan lurus), maka kecepatan pada gerak melingkar disebut kecepatan sudut, karena benda bergerak melalui sudut tertentu.
Terdapat dua jenis kecepatan pada Gerak Lurus, yakni kecepatan rata-rata dan kecepatan sesaat. Kita dapat mengetahui kecepatan rata-rata pada Gerak Lurus dengan membandingkan besarnya perpindahan yang ditempuh oleh benda dan waktu yang dibutuhkan benda untuk bergerak . Nah, pada gerak melingkar, kita dapat menghitung kecepatan sudut rata-rata dengan membandingkan perpindahan sudut dengan selang waktu yang dibutuhkan ketika benda berputar. Secara matematis kita tulis :
Bagaimana dengan kecepatan sudut sesaat ?
Kecepatan sudut sesaat kita diperoleh dengan membandingkan perpindahan sudut dengan selang waktu yang sangat singkat. Secara matematis kita tulis :
Sesuai dengan kesepakatan ilmiah, jika ditulis kecepatan sudut maka yang dimaksud adalah kecepatan sudut sesaat. Kecepatan sudut termasuk besaran vektor. Vektor kecepatan sudut hanya memiliki dua arah (searah dengan putaran jarum jam atau berlawanan arah dengan putaran jarum jam), dengan demikian notasi vektor omega dapat ditulis dengan huruf miring dan cukup dengan memberi tanda positif atau negatif. Jika pada Gerak Lurus arah kecepatan sama dengan arah perpindahan, maka pada Gerak Melingkar, arah kecepatan sudut sama dengan arah perpindahan sudut.
Percepatan Sudut
Dalam gerak melingkar, terdapat percepatan sudut apabila ada perubahan kecepatan sudut. Percepatan sudut terdiri dari percepatan sudut sesaat dan percepatan sudut rata-rata. Percepatan sudut rata-rata diperoleh dengan membandingkan perubahan kecepatan sudut dan selang waktu. Secara matematis ditulis :
Percepatan sudut sesaat diperoleh dengan membandingkan perubahan sudut dengan selang waktu yang sangat singkat. Secara matematis ditulis :
Satuan percepatan sudut dalam Sistem Internasional (SI) adalah rad/s2 atau rad-2
HUBUNGAN ANTARA BESARAN GERAK LURUS DAN GERAK MELINGKAR
Pada pembahasan sebelumnya, kita telah mempelajari tentang besaran fisis Gerak Melingkar, meliputi Perpindahan Sudut, Kecepatan Sudut dan Percepatan Sudut. Apakah besaran Gerak Melingkar tersebut memiliki hubungan dengan besaran fisis gerak lurus (perpindahan linear, kecepatan linear dan percepatan linear) ?
Dalam gerak melingkar, arah kecepatan linear dan percepatan linear selalu menyinggung lingkaran. Karenanya, dalam gerak melingkar, kecepatan linear dikenal juga sebagai kecepatan tangensial dan percepatan linear disebut juga sebagai percepatan tangensial.
Hubungan antara Perpindahan Linear dengan Perpindahan sudut
Pada gerak melingkar, apabila sebuah benda berputar terhadap pusat/porosnya maka setiap bagian benda tersebut bergerak dalam suatu lingkaran yang berpusat pada poros tersebut. Misalnya gerakan roda yang berputar atau bumi yang berotasi. Ketika bumi berotasi, kita yang berada di permukaan bumi juga ikut melakukan gerakan melingkar, di mana gerakan kita berpusat pada pusat bumi. Ketika kita berputar terhadap pusat bumi, kita memiliki kecepatan linear, yang arahnya selalu menyinggung lintasan rotasi bumi. Pemahaman konsep ini akan membantu kita dalam melihat hubungan antara perpindahan linear dengan perpindahan sudut. Bagaimana hubungan antara perpindahan linear dengan perpindahan sudut ?
Perhatikanlah gambar di bawah ini.
Ketika benda berputar terhadap poros O, titik A memiliki kecepatan linear (v) yang arahnya selalu menyinggung lintasan lingkaran.
Hubungan antara perpindahan linear titik A yang menempuh lintasan lingkaran sejauh x dan perpindahan sudut teta (dalam satuan radian), dinyatakan sebagai berikut :
Di mana r merupakan jarak titik A ke pusat lingkaran/jari-jari lingkaran.
Hubungan antara Kecepatan Tangensial dengan Kecepatan sudut
Besarnya kecepatan linear (v) benda yang menempuh lintasan lingkaran sejauh delta x dalam suatu waktu dapat dinyatakan dengan persamaan :
Sekarang kita subtitusikan delta x pada persamaan 2 ke dalam persamaan 1
Dari persamaan di atas tampak bahwa semakin besar nilai r (semakin jauh suatu titik dari pusat lingkaran), maka semakin besar kecepatan linearnya dan semakin kecil kecepatan sudutnya.
Hubungan antara Percepatan Tangensial dengan Percepatan Sudut
Besarnya percepatan tangensial untuk perubahan kecepatan linear selama selang waktu tertentu dapat kita nyatakan dengan persamaan
at = percepatan tangensial, r = jarak ke pusat lingkaran (jari-jari lingkaran) dan alfa= percepatan sudut. Berdasarkan persamaan ini, tampak bahwa semakin jauh suatu titik dari pusat lingkaran maka semakin besar percepatan tangensialnya dan semakin kecil percepatan sudut.
Semua persamaan yang telah diturunkan di atas kita tulis kembali pada tabel di bawah ini.
Catatan : Pada gerak melingkar, semua titik pada benda yang melakukan gerak melingkar memiliki perpindahan sudut, kecepatan sudut dan percepatan sudut yang sama, tetapi besar perpindahan linear, kecepatan tangensial dan percepatan tangensial berbeda-beda, bergantung pada besarnya jari-jari (r)
Latihan Soal 1 :
Sebuah roda melakukan 900 putaran dalam waktu 30 detik. Berapakah kecepatan sudut rata-ratanya dalam satuan rad/s ?
Panduan Jawaban :
Gerak peluru merupakan suatu jenis gerakan benda yang pada awalnya diberi kecepatan awal lalu menempuh lintasan yang arahnya sepenuhnya dipengaruhi oleh gravitasi.
Karena gerak peluru termasuk dalam pokok bahasan kinematika (ilmu fisika yang membahas tentang gerak benda tanpa mempersoalkan penyebabnya), maka pada pembahasan ini, Gaya sebagai penyebab gerakan benda diabaikan, demikian juga gaya gesekan udara yang menghambat gerak benda. Kita hanya meninjau gerakan benda tersebut setelah diberikan kecepatan awal dan bergerak dalam lintasan melengkung di mana hanya terdapat pengaruh gravitasi.
Mengapa dikatakan gerak peluru ? kata peluru yang dimaksudkan di sini hanya istilah, bukan peluru pistol, senapan atau senjata lainnya. Dinamakan gerak peluru karena mungkin jenis gerakan ini mirip gerakan peluru yang ditembakkan.
Jenis-jenis Gerak Parabola
Dalam kehidupan sehari-hari terdapat beberapa jenis gerak parabola.
Pertama, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah. Dalam kehidupan sehari-hari terdapat banyak gerakan benda yang berbentuk demikian. Beberapa di antaranya adalah gerakan bola yang ditendang oleh pemain sepak bola, gerakan bola basket yang dilemparkan ke ke dalam keranjang, gerakan bola tenis, gerakan bola volly, gerakan lompat jauh dan gerakan peluru atau rudal yang ditembakan dari permukaan bumi.
Kedua, gerakan benda berbentuk parabola ketika diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal, sebagaimana tampak pada gambar di bawah. Beberapa contoh gerakan jenis ini yang kita temui dalam kehidupan sehari-hari, meliputi gerakan bom yang dijatuhkan dari pesawat atau benda yang dilemparkan ke bawah dari ketinggian tertentu.
Ketiga, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dari ketinggian tertentu dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah.
Menganalisis Gerak Parabola
Bagaimana kita menganalisis gerak peluru ? Eyang Galileo telah menunjukan jalan yang baik dan benar. Beliau menjelaskan bahwa gerak tersebut dapat dipahami dengan menganalisa komponen-komponen horisontal dan vertikal secara terpisah. Gerak peluru adalah gerak dua dimensi, di mana melibatkan sumbu horisontal dan vertikal. Jadi gerak parabola merupakan superposisi atau gabungan dari gerak horisontal dan vertikal. Kita sebut bidang gerak peluru sebagai bidang koordinat xy, dengan sumbu x horisontal dan sumbu y vertikal. Percepatan gravitasi hanya bekerja pada arah vertikal, gravitasi tidak mempengaruhi gerak benda pada arah horisontal.
Percepatan pada komponen x adalah nol (ingat bahwa gerak peluru hanya dipengaruhi oleh gaya gravitasi. Pada arah horisontal atau komponen x, gravitasi tidak bekerja). Percepatan pada komponen y atau arah vertikal bernilai tetap (g = gravitasi) dan bernilai negatif /-g (percepatan gravitasi pada gerak vertikal bernilai negatif, karena arah gravitasi selalu ke bawah alias ke pusat bumi).
Gerak horisontal (sumbu x) kita analisis dengan Gerak Lurus Beraturan, sedangkan Gerak Vertikal (sumbu y) dianalisis dengan Gerak Jatuh Bebas.
Untuk memudahkan kita dalam menganalisis gerak peluru, mari kita tulis kembali persamaan Gerak Lurus Beraturan (GLB) dan Gerak Jatuh Bebas (GJB).
Sebelum menganalisis gerak parabola secara terpisah, terlebih dahulu kita amati komponen Gerak Peluru secara keseluruhan.
Pertama, gerakan benda setelah diberikan kecepatan awal dengan sudut teta terhadap garis horisontal.
Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan v0y merupakan kecepatan awal pada sumbu y. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x. Pada titik tertinggi lintasan gerak benda, kecepatan pada arah vertikal (vy) sama dengan nol.
Kedua, gerakan benda setelah diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal.
Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan Kecepatan awal pada sumbu vertikal (voy) = 0. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x.
Menganalisis Komponen Gerak Parabola secara terpisah
Sekarang, mari kita turunkan persamaan untuk Gerak Peluru. Kita nyatakan seluruh hubungan vektor untuk posisi, kecepatan dan percepatan dengan persamaan terpisah untuk komponen horisontal dan vertikalnya. Gerak peluru merupakan superposisi atau penggabungan dari dua gerak terpisah tersebut
Komponen kecepatan awal
Terlebih dahulu kita nyatakan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y.
Catatan : gerak peluru selalu mempunyai kecepatan awal. Jika tidak ada kecepatan awal maka gerak benda tersebut bukan termasuk gerak peluru. Walaupun demikian, tidak berarti setiap gerakan yang mempunyai kecepatan awal termasuk gerak peluru
Karena terdapat sudut yang dibentuk, maka kita harus memasukan sudut dalam perhitungan kecepatan awal. Mari kita turunkan persamaan kecepatan awal untuk gerak horisontal (v0x) dan vertikal (v0y) dengan bantuan rumus Sinus, Cosinus dan Tangen. Dipahami dulu persamaan sinus, cosinus dan tangen di bawah ini.
Berdasarkan bantuan rumus sinus, cosinus dan tangen di atas, maka kecepatan awal pada bidang horisontal dan vertikal dapat kita rumuskan sebagai berikut :
Keterangan : v0 adalah kecepatan awal, v0x adalah kecepatan awal pada sumbu x, v0y adalah kecepatan awal pada sumbu y, teta adalah sudut yang dibentuk terhadap sumbu x positip.
Kecepatan dan perpindahan benda pada arah horisontal
Kita tinjau gerak pada arah horisontal atau sumbu x. Sebagaimana yang telah dikemukakan di atas, gerak pada sumbu x kita analisis dengan Gerak Lurus Beraturan (GLB). Karena percepatan gravitasi pada arah horisontal = 0, maka komponen percepatan ax = 0. Huruf x kita tulis di belakang a (dan besaran lainnya) untuk menunjukkan bahwa percepatan (atau kecepatan dan jarak) tersebut termasuk komponen gerak horisontal atau sumbu x. Pada gerak peluru terdapat kecepatan awal, sehingga kita gantikan v dengan v0.
Dengan demikian, kita akan mendapatkan persamaan Gerak Peluru untuk sumbu x :
Keterangan : vx adalah kecepatan gerak benda pada sumbu x, v0x adalah kecepatan awal pada sumbu x, x adalah posisi benda, t adalah waktu tempuh, x0 adalah posisi awal. Jika pada contoh suatu gerak peluru tidak diketahui posisi awal, maka silahkan melenyapkan x0.
Perpindahan horisontal dan vertikal
Kita tinjau gerak pada arah vertikal atau sumbu y. Untuk gerak pada sumbu y alias vertikal, kita gantikan x dengan y (atau h = tinggi), v dengan vy, v0 dengan voy dan a dengan -g (gravitasi). Dengan demikian, kita dapatkan persamaan Gerak Peluru untuk sumbu y :
Keterangan : vy adalah kecepatan gerak benda pada sumbu y alias vertikal, v0y adalah kecepatan awal pada sumbu y, g adalah gravitasi, t adalah waktu tempuh, y adalah posisi benda (bisa juga ditulis h), y0 adalah posisi awal.
Berdasarkan persamaan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y yang telah kita turunkan di atas, maka kita dapat menulis persamaan Gerak Peluru secara lengkap sebagai berikut :
Setelah menganalisis gerak peluru secara terpisah, baik pada komponen horisontal alias sumbu x dan komponen vertikal alias sumbu y, sekarang kita menggabungkan kedua komponen tersebut menjadi satu kesatuan. Hal ini membantu kita dalam menganalisis Gerak Peluru secara keseluruhan, baik ditinjau dari posisi, kecepatan dan waktu tempuh benda. Pada pokok bahasan Vektor dan Skalar telah dijelaskan teknik dasar metode analitis. Sebaiknya anda mempelajarinya terlebih dahulu apabila belum memahami dengan baik.
Persamaan untuk menghitung posisi dan kecepatan resultan dapat dirumuskan sebagai berikut.
Pertama, vx tidak pernah berubah sepanjang lintasan, karena setelah diberi kecepatan awal, gerakan benda sepenuhnya bergantung pada gravitasi. Nah, gravitasi hanya bekerja pada arah vertikal, tidak horisontal. Dengan demikian vx bernilai tetap.
Kedua, pada titik tertinggi lintasan, kecepatan gerak benda pada bidang vertikal alias vy = 0. pada titik tertinggi, benda tersebut hendak kembali ke permukaan tanah, sehingga yang bekerja hanya kecepatan horisontal alias vx, sedangkan vy bernilai nol. Walaupun kecepatan vertikal (vy) = 0, percepatan gravitasi tetap bekerja alias tidak nol, karena benda tersebut masih bergerak ke permukaan tanah akibat tarikan gravitasi. jika gravitasi nol maka benda tersebut akan tetap melayang di udara, tetapi kenyataannya tidak teradi seperti itu.
Ketiga, kecepatan pada saat sebelum menyentuh lantai biasanya tidak nol.
Pembuktian Matematis Gerak Peluru = Parabola
Sekarang Gurumuda ingin menunjukkan bahwa jalur yang ditempuh gerak peluru merupakan sebuah parabola, jika kita mengabaikan hambatan udara dan menganggap bahwa gravitasi alias g bernilai tetap. Untuk menunjukkan hal ini secara matematis, kita harus mendapatkan y sebagai fungsi x dengan menghilangkan/mengeliminasi t (waktu) di antara dua persamaan untuk gerak horisontal dan vertikal, dan kita tetapkan x0 = y0 = 0.
Kita subtitusikan nilai t pada persamaan 1 ke persamaan 2
Dari persamaan ini, tampak bahwa y merupakan fungsi dari x dan mempunyai bentuk umum
y = ax – bx2
Di mana a dan b adalah konstanta untuk gerak peluru tertentu. Persamaan ini merupakan fungsi parabola dalam matematika.
Hukum Newton pada benda-benda yang dihubungkan dengan tali – Katrol
Tegangan Tali
Untuk membantu dirimu memahami konsep tegangan tali, pahami ilustrasi berikut ini. Misalnya kita letakan 3 benda pada permukaan bidang datar, di mana ketiga benda tersebut dihubungkan dengan tali (amati gambar di bawah).
Ketika kita menarik benda A ke kiri dengan gaya F, benda B dan C juga ikut tertarik karena ketiga benda tersebut dihubungkan dengan tali. Pada saat benda A ditarik, tali 1 dan tali 2 tegang sehingga pada kedua ujung tali tersebut timbul tegangan tali (T). Benda A dan B dihubungkan dengan tali yang sama sehingga gaya tegangan tali pada kedua ujung tali 1 sama besar (T1). Demikian juga, besar gaya tegangan tali pada kedua ujung tali 2 (T2) sama besar, karena benda B dan C dihubungkan dengan tali yang sama. Ingat bahwa gaya tegangan tali pada tali 1 (T1) berbeda dengan gaya tegangan tali pada tali 2 (T2), karena tali 1 bekerja pada benda A dan B sedangkan tali 2 bekerja pada benda B dan C. Inti penjelasan ini adalah gaya tegangan tali (T) sama besar apabila tali bekerja pada benda yang sama, dang besar gaya tegangan tali berbeda apabila bekerja pada benda yang berbeda.
Tegangan Tali pada Katrol
Agar dirimu semakin memahami gaya tegangan tali, mari kita tinjau gaya tegangan tali katrol. Permukaan katrol dianggap licin sempurna sehingga tidak ada gaya gesek dan massa tali sangat ringan sehingga kita abaikan dalam analisis ini.
Ilustrasi 1 :
Pada katrol digantungkan tali dan pada kedua ujung tali digantungkan dua benda, masing-masing bermasa m1 dan m2. m1 lebih besar dari m2 (gaya berat pada benda bermassa m1 lebih besar dari gaya berat pada benda bermassa m2) sehingga katrol berputar ke kiri (berlawanan dengan arah jarum jam), sebagaimana tampak pada gambar di bawah. Benda bermassa m1 bergerak turun sedangkan benda bermassa m2 bergerak naik….
Pada tali bekerja gaya tegangan tali T1 dan T2, di mana besar gaya tegangan tali T1 = T2 (ingat ya, T1 dan T2 berada pada tali yang sama).
Hukum Newton pada benda-benda yang dihubungkan dengan tali.
Pertama, dua buah benda bermassa sama, di mana kedua benda tersebut dihubungkan dengan sebuah tali dan digantungkan pada sebuah katrol (Lihat gambar di bawah). Kita menganggap permukaan katrol sangat licin sehingga gaya gesekan diabaikan dan massa tali sangat ringan sehingga kita abaikan dalam analisis ini.
Berdasarkan Hukum III Newton (Hukum aksi-reaksi), benda 1 ditarik oleh tali dengan gaya sebesar T1 yang arahnya ke atas dan tali sendiri ditarik ke bawah oleh benda 1 dengan gaya sebesar T1 yang arahnya ke bawah (sambil lihat gambar ya…) Demikian juga dengan benda 2. Benda 2 ditarik oleh tali dengan gaya sebesar T2 yang arahnya ke atas dan tali sendiri ditarik ke bawah oleh benda 2 dengan gaya sebesar T2 yang arahnya ke bawah.
Karena m1 (massa benda 1) dan m2 (massa benda 2) sama besar maka benda diam alias tidak bergerak. Dengan kata lain, benda berada dalam keadaan setimbang. walaupun benda diam, tapi pada benda tersebut bekerja gaya berat dan gaya tegangan tali.
Berdasarkan hukum II Newton, gaya yang bekerja pada benda di atas adalah :
Menentukan nilai percepatan (a)
Kita eliminasi gaya tegangan tali (T) pada kedua persamaan ini untuk memperoleh nilai percepatan gerak benda (a) :
Bagaimana dengan gaya tegangan tali T ?
Untuk memperoleh nilai T, kita subtitusikan nilai a pada persamaan 3 ke dalam persamaan 1 atau persamaan 2. Misalnya kita subtitusikan nilai a pada persamaan 3 ke dalam persamaan 1 :
Ketiga, dua benda dihubungkan dengan katrol pada bidang miring, di mana massa benda 2 (m2) lebih besar dari massa benda 1 (m1), sehingga benda 2 bergerak ke bawah sedangkan benda 1 bergerak ke atas. perhatikan arah putaran katrol.
Berdasarkan hukum II Newton, gaya yang bekerja pada benda di atas adalah :
Karena gaya tegangan tali T1 dan gaya tegangan tali T2 bekerja pada tali yang sama, maka :
T1 = T2 = T
Dengan demikian, persamaan 1 dan persamaan 2 kita tulis ulang menjadi :
Menentukan nilai percepatan (a)
Kita eliminasi gaya tegangan tali (T) pada kedua persamaan ini untuk memperoleh nilai percepatan gerak benda (a) :
Bagaimana dengan gaya tegangan tali T ?
Untuk memperoleh nilai T, kita subtitusikan nilai a pada persamaan 3 ke dalam persamaan 1 atau persamaan 2. Misalnya kita subtitusikan nilai a pada persamaan 3 ke dalam persamaan 1 :
Tidak ada komentar:
Posting Komentar